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ABSTRACT 

Research on inverted pendulum has gained momentum over the last decade on a number 

of robotic laboratories over the world; due to its unstable proprieties is a good example 

for control engineers to verify a control theory.  To verify that the pendulum can 

balance we can make some simulations using a closed-loop controller method such as 

the linear quadratic regulator or the proportional–integral–derivative method. 

Also the idea of robotic teleoperation is gaining ground. Controlling a robot at a 

distance and doing that precisely. However, designing the tool to takes the best benefit 

of the human skills while keeping the error minimal is interesting, and due to the fact 

that the inverted pendulum is an unstable system it makes a compelling test case for 

exploring dynamic teleoperation. 

Therefore this thesis focuses on the construction of a two-wheel inverted pendulum 

robot, which sensor we can use to do that, how they must be integrated in the system 

and how we can use a human to control an inverted pendulum.  

The inverted pendulum robot developed employs technology like sensors, actuators and 

controllers. 

This Master thesis starts by presenting an introduction to inverted pendulums and some 

information about related areas such as control theory. It continues by describing related 

work in this area. Then we describe the mathematical model of a two-wheel inverted 

pendulum and a simulation made in Matlab. We also focus in the construction of this 

type of robot and its working theory. Because this is a mobile robot we address the 

theme of the teleoperation and finally this thesis finishes with a general conclusion and 

ideas of future work. 

 

 

 

KEYWORDS: Two-wheel inverted pendulum, Arduino, accelerometer, gyroscope, 

kalman filter, PID, teleoperation.  
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CHAPTER 1 - INTRODUCTION 

1.1. OVERVIEW 

When we think of a pendulum we think of a ball at the end of a wire suspended from a 

pivot point, well an inverted pendulum is exactly the opposite. The inverted pendulum 

is a pendulum with is mass above the pivot point, by the simple fact that its mass is 

above the pivot point the system is unstable by nature. Due to the fact that it is unstable 

it’s a very good example in control engineering to verify a control theory.  

Inverted pendulum provides a good model example for a rocket or missile guidance, an 

automatic aircraft landing system, aircraft stabilization in the turbulent air-flow, 

stabilization of a cabin in a ship, and so forth. 

A two-wheeled inverted pendulum robot is a robot that simulates the behavior of a 

inverted pendulum, i.e., we aim to build a robot that can self balance on two wheels 

only by reading and understanding the data provided by a sensor and act on the two-

wheel according.  

Due to the unstable nature of the pendulum it’s an example of the use of control theory. 

Control theory is a discipline that deals with the behavior of unstable systems. The 

desired output of a system is called reference, when a system as multiples inputs it need 

a controller to act on them so that its possible obtain the desire output of the system.  

A controller, in control theory, is a device that observe and manipulates the inputs of a 

system so that we get the desire output. For example, the sensors of an automatic door 

(controller) that will open the door when a person approaches. In this case the controller 

is called an open-loop controller because isn’t concerned about any unexpected forces 

that act on the system. To solve this problem, control theory introduces feedback. A 

close-loop controller uses feedback to control the output of a dynamical system.  

Common closed-loop controller architectures include the PID controller and the LQR 

method. 

PID controller means proportional–integral–derivative controller and attempts to correct 

the error between measured process variable, i.e., the variable that we need to control, 

and a desired setpoint, the value that the variable must reach or obtain. It’s achieved 
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through calculating a corrective action to adjust the process accordingly and rapidly in 

order to keep the error minimal. It’s the sum of the tree terms; the proportional term that 

changes the output value according to the current error, the integral term is proportional 

to the magnitude of the error and the duration of the error, and the derivate term of the 

PID calculate the error over the time. 

The linear quadratic regulator (LQR) is a well know method to determine the feedback 

gains of a dynamic system. It’s assumed that we have an optimal full-state feedback, i.e. 

that we can measure all of our states.     

When we talk about robotic we need to consider which type of function we need to 

have, what type of data are we interest in collect and to what purpose. In an inverted 

pendulum robot we are interested in measure the tilt of the pendulum, the tilt will tell us 

to which side and if the robot is falling.  

To do that we can use different types of sensors such as; light sensor, infrared sensors, 

accelerometer or gyroscope.  

Light sensors and infrared sensors have the disadvantage of being subject to the lighting 

conditions. In order to operate successfully we need to control those conditions 

precisely with little margin for error, in the other side the accelerometer and gyroscope 

don’t have that problem because they don’t act on the light but with the gravity of the 

earth.  

An accelerometer is used to measure the acceleration that a body experiences relative to 

freefall, with that we can determine when and to which side the body is falling. 

Accelerometers are used to measure vehicle acceleration; machinery health monitoring; 

measure the motion and vibration of a structure; measure the depth of CPR chest 

compressions; in navigation to calculate the position, orientation, and velocity (direction 

and speed of movement) of a moving object; detect apogee in both professional and in 

amateur rocketry and more recently phones contain accelerometers for user interface 

control. 

An angular rate sensor or gyroscope is a device for measure or maintaining direction 

based on the principles of angular momentum. Applications of gyroscope include 

navigation and stabilization of flying vehicles like Radio-controlled helicopters or 
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UAVs. Due to higher precision, gyroscopes are also used to maintain direction in tunnel 

mining. 

To measure the tilt of the inverted pendulum system we need to use an accelerometer 

that can measure the acceleration in two-axis, with these data it’s possible to determine 

the pendulum tilt and more precisely the angle. However we can simply use the 

accelerometer but if we only use an accelerometer we are subject to that the information 

give by the accelerometer is not the most exact as possible, for that and to get the most 

precise information on the tilt we associate and gyroscope, so that the information is 

more precise.  

Data from accelerometer and gyroscope are subject to noise. The noise can be from a 

bad wire contact, bad reading, etc. To correct the value and minimize the noise the value 

need to be filtered; the most well know filter algorithm to combine accelerometer and 

gyroscope data is the kalman filter.  

A kalman filter is an efficient recursive filter that estimates the state of a linear dynamic 

system from a series of noisy measurements. It is used in a wide range of engineering 

applications from radar to computer vision, and is an important topic in control theory 

and control systems engineering. (Wikipedia, Kalman filter, 2009) 

In a mobile inverted pendulum motors are an important part, it’s necessary to choose the 

more suitable motor to the robot. The Devantech RD01 12v Drive System is composed 

by a MD23 motor drive module, two EMG30 gearmotors with encoders to allow 

controlling each motor and respective speed. Only a single 12v battery capable of 

supplying peak current of 6 Amps is required to power the system. Power for the logic 

comes from an on-board 5v regulator which is also capable of supplying up to 300mA 

to other circuits. The board communicates with the Arduino trough the MD23 IC2. 

Arduino is an open-source physical computing platform based on a simple 

microcontroller board and it has a specific development environment for writing 

software for the board, the “Arduino IDE”.  Arduino BT is a microprocessor platform 

incorporating a Bluetooth module that can be use to control the robot at distance. 

Teleoperation is controlling devices or machine at distance. Through a manipulator a 

person is capable of controlling a machine at a distance, that machine will act 

accordingly to the impulse receive. It’s becoming increasing important in domains such 
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as tele-surgery, exploration, bomb disposal, and work in hazardous environments. 

Although the intelligence of devices is increasing, many of these situations still require 

that a person perform complex physical tasks with a high level of skill. 

This project will involve building a simple robotic system, programming its controller 

to automatically balance it then developing a feedback system which allows a human 

operator to complete this skilled task. 

The robot developed uses technologies like microcontrollers (Arduino), sensors 

(accelerometer, gyroscope), motors encoders (MD23), and Bluetooth communication. It 

provides experience with basic electronics. 

1.2. THESIS OUTLINE 

This thesis will cover the following chapters. 

Chapter 2 consists of the references to existing works that relate to this thesis and that 

influenced us in making prototype. 

In chapter 3 we describe the modeling and simulation of a two-wheel inverted 

pendulum with the linear quadratic regulator method using Matlab. 

Chapter 4 describes the components and the construction of a two-wheel inverted 

pendulum.  We also discuss the main circuit of the robot and the computing structure of 

the program. 

At chapter 5 we will describe the tests that were made and their conclusion. 

In chapter 6 we describe the teleoperation and its connection with the inverted 

pendulum problem. 

At chapter 7 will describe an overview of the contribution of this thesis, a conclusion of 

the thesis and possible areas for future work.  
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CHAPTER 2 - RELATED WORK (STATE OF THE ART) 

In this chapter we mention the different types of mobile inverted pendulum robots and 

the different components used in their construction. We will only review the most 

important, their similarity and differences. 

2.1. INVERTED PENDULUM 

An inverted pendulum is a pendulum which has its mass above its pivot point. It is often 

implemented with the pivot point mounted on a cart that can move horizontally and may 

be called a cart and pole. Whereas a normal pendulum is stable when hanging 

downwards, an inverted pendulum is inherently unstable, and must be actively balanced 

in order to remain upright, either by applying a torque at the pivot point or by moving 

the pivot point horizontally as part of a feedback system. 

 

Figure 1 - Inverted Pendulum 

2.2. TWO-WHEELED INVERTED PENDULUM ROBOTS 

The idea of a robot that can self-balance has gained momentum over the last decade in 

various robot laboratories, for academic or research purpose worldwide and peoples 

who have robotic as a hobby.  

Kazuo Yamafuji, Professor Emeritus at the University of Electro-Communications in 

Tokyo, built the first two-wheel inverted pendulum robot in 1986, according to an 

article in the Japan Times. (Times, 2001) 
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Figure 2 - Kazuo Yamafuji Robot 

 

Basically, independent of how the robot was built, the idea is the same, built a robot that 

can simulate the behavior of an inverted pendulum. That can be made of different 

forms, we can use rolling carts attached to a platform or two wheels, different types of 

sensors from light sensor to accelerometers and gyroscopes and different type of 

controller. 

2.2.1. SENSORS 

Sensors are an important part of a mobile inverted pendulum robot. They will give us 

the angle of the pendulum. 

2.2.1.1. LIGHT SENSORS 

They must be positioned at front or back of the robot facing downwards so that it’s 

possible to measure the wavelength of floor’s color. With that value it’s possible to 

measure the distance to the floor, and figure out which side the robot is falling. 

Dani Piponi’s Equibot uses a Sharp infrared sensor to measure the distance to the floor 

and uses that information to deduce tilt angle. Equibot is a balancing robot a bit like a 

small scale Segway. It is based around an ATMega32 RISC Microcontroller. (Piponi) 
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Figure 3 – Equibot 

Steve Hassenplug’s LegWay is a two wheel robot that uses RCX Lego. It balances 

using the IR Lego sensor to detect the floor proximity. Can follow a black line and/or 

spin in place.  (Hassenplug, 2007) 

 

Figure 4 - Steve's LegWay 

Philippe Hurbain’s NXTWay take inspiration on the LegWay, is the same idea but 

instead of using the RCX Lego uses NXT Lego. The basic principle is the same; it uses 

the light sensor to detect the proximity to the floor and balance. (Hurbain) 
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Figure 5 - Philippe Hurbain’s NXTWay 

2.2.1.2. ACCELEROMETER WITH GYROSCOPE 

To sense the robot’s angle we can use an accelerometer associated with a gyroscope. 

The accelerometer is responsible for measuring the proper acceleration the robot 

experiences relative to freefall, with this data we can determinate the angle of the robot 

and the gyroscope will measure the orientation that is used to correct accelerometer’s 

angle. These sensors can be placed at any side of the robot, provided that they are 

aligned according to axis in which the robot falls.  

The UMASS uBot is an inverted pendulum robot that uses an IMU board composed by 

an accelerometer and a gyroscope. The uBot is a platform that was custom build at 

UMASS, Amherst. The uBot was then modeled as an inverted pendulum using the State 

Space approach. A Linear Quadratic Regulator (LQR) was then used to solve the 

control problem. (Amherst, 2006) 
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Figure 6 - UMASS uBot 

Another example of an inverted pendulum that uses accelerometer and gyroscope is 

David P. Anderson’s nBot. The data collected from both sensors is processed by the 

FAS-G IMU that implements a "Weiner" filter to combine the two sensors into a single 

measurement. 

The robot uses the HC11 robot controller developed for the M.I.T. 6.270 Robotics 

Course, the same robot controller used on the LegoBot and SR04. (Anderson, 2007) 

 

Figure 7 - David Anderson's nBot 
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Bender is another inverted pendulum robot to use both sensors to measure angle. Ted 

Larson and Bob Allen are the brains behind it. Bender is a robot that consists of several 

platforms to support its various components. Its “brain” is a Microchip PIC18F452.   

 

Figure 8 - Ted Larson's Bender 

We also have JOE; JOE was developed by the Industrial Electronics Laboratory at the 

Swiss Federal Institute of Technology, Lausanne, Switzerland. Due to its configuration 

with two coaxial wheels, each of which is coupled to a DC motor, the vehicle is able to 

do stationary U-turns. A control system, made up of two decoupled state-space 

controllers, pilots the motors so as to keep the system in equilibrium. (Grasser, 2004) 
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Figure 9 – JOE 

Roy Watanabe’s NXTWay-G can be described like been a new version of the NXTWay 

but instead of using the NXT Light sensor it uses the NXT Gyro sensor. It means that 

instead of detect the proximity to the floor to balance; the balancing is made using the 

rotation detected by the gyro sensor, the number of degrees. By using this type of sensor 

it can eliminate the problem of the light sensor (must have a light controlled 

environment) and now use the body’s rotation angle. (Watanabe, 2007) 

 

Figure 10 - Ryo Watanabe NXTWay-G 

 

These were some examples of inverted pendulums. They serve to illustrate the different 

ways of construction and components of a robot capable of behaving like an inverted 
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pendulum. Among these components we highlight the sensors used; robots that use light 

sensors have the drawback that it is necessary to control the lighting conditions of area 

the robot will operate. The smallest difference in light intensity in this spot will affect 

sensor’s reading and the controller may think that the robot is falling when in fact is in 

equilibrium position, or vice versa. Furthermore, the use of an accelerometer associated 

with a gyroscope, by not being associated with light but to gravity, resolves this 

problem and provides a better way to detect the tilt of the robot.  

2.3. 2 DEGREE OF FREEDOM INVERTED PENDULUM ROBOTS 

Another example of an inverted pendulum robot it’s Ballbot. The Ballbot is a mobile 

robot, an attempt to solve the robotic unicycle problem, and is designed to balance itself 

on its single spherical wheel while travelling around. It is the focus of the Ballbot 

Research Platform, a project conducted at Carnegie Mellon University, made possible 

by grants from the National Science Foundation. The robot is being developed by Ralph 

Hollis and George Kantor, with help from the graduate students Tom Lauwers, Anish 

Mampetta and Eric Shearer. The purpose of the Ballbot project is to discover how 

robots may maintain dynamic stability (that is, reliable balance), to enable designs with 

narrower bases for improved navigability (such as in a crowded room). This is a 

departure from the current paradigm in robot design, which relies on the static stability 

provided by having three or more wheels (and a much wider base). The project is titled 

"Dynamically-Stable Mobile Robots in Human Environments". 

Ballbot balances with the aid of on-board sensors and computers and uses an "actuator 

mechanism based on an inverse mouse-ball drive" to move and change direction 

without needing to turn first. 
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Figure 11 - Ballbot 

2.4. TELEOPERATION 

Teleoperation indicates operation of a machine at a distance. It is similar in meaning to 

the phrase "remote control" but is usually encountered in research, academic and 

technical environments. It is most commonly associated with robotics and mobile robots 

but can be applied to a whole range of circumstances in which a device or machine is 

operated by a person from a distance. (Wikipedia, 2009) 

A telemanipulator (teleoperator or telerator) is a device that is controlled remotely by a 

human operator. If such a device has the ability to perform autonomous work, it is 

called a telerobot. If the device is completely autonomous, it is called a robot. Devices 

designed to allow the operator to control a robot at a distance are sometimes called 

telecheric robotics. 

Telerobotics, is the technical term for the remote control of a robot called a telechir. In a 

telerobotic system, a human operator controls the movements of a telechir from some 

distance away. Signals are sent to the telechir to control it; other signals come back, 

telling the operator that the telechir has followed the instructions. These control and 

return signals are called telemetry. 
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Some teleoperated robots have a limited range of functions. A good example is a space 

probe, such as Voyager, hurtling past some remote planet. Earthbound scientists sent 

commands to Voyager based on the telemetry received from it, aiming its cameras and 

resolving minor problems. 

 

Figure 12 - Voyager probe 

In a more sophisticated form of teleoperation known as telepresence, the human 

operator has a sense of being on location, so that the experience resembles virtual reality 

(VR). For example, a telechir can be equipped with sensors that detect sensations of 

vision and sound, and in some cases pressure and texture. These sensations can then be 

reproduced at the operator location by means of specialized transducers. 

(techtarget.com, 2008) 
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Figure 13 - Teliris Unified VirtuaLive telepresence room in use (2007) 

2.4.1. TELEMANIPULATOR 

The IED detonator, is a telemanipulator for investigating potentially explosive devices. 

Its goes investigate the presence of explosive and allows that the human operator is safe 

from any danger. 

 

Figure 14 - IED detonator 

The Da Vinci Telerobotic Surgical System permits the surgeon to perform an operation 

on a patient from a remote site. Currently, the FDA requires the surgeon to sit 

physically in the same room as the patient on whom he is operating. 

The surgeon sits at the computer console. He views a virtual operative field through a 

binocular 3-dimensional imaging system. He sits in a comfortable ergonomically correct 
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position with arms supported by a rest. His feet activate several peddles that control 

various aspects of the robot’s movements. 

The surgeon’s console contains the binocular 3-dimensional imaging system. 

The surgeon immerses himself within a virtual operative field that is viewed through  

the binocular viewing finders.His arms are supported by the arm rest. Foot pedals  

control various adjustments of the robotic arms and instruments. 

The surgeon inserts his hands into a “master” that translates motions of his hands into 

motions of the robotic arms and hand-like instruments. The surgeon acts as the “master” 

and the robot as the “slave” in this telerobotic “master-slave” system.Da Vinci only 

duplicate the motions of the surgeon. Da Vinci does not initiate any actions on its own 

volition. (Association) 

 

Figure 15 - DA VINCI TELEROBOTIC SURGICAL SYSTEM 

Dextre (also known as the Special Purpose Dexterous Manipulator (SPDM)) is a two 

armed robot, or telemanipulator, which is part of the Mobile Servicing System on the 

International Space Station (ISS), and extends the function of this system to replace 

some activities otherwise requiring spacewalks. It was launched March 11, 2008 on 

mission STS-123. (Wikipedia, Dextre, 2009) 
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Figure 16 – Dextre 

 

We can also make a difference between a remotely operated vehicle (ROV) and a 

remote control vehicle (RCV). 

2.4.2. REMOTELY OPERATED VEHICLE 

A remotely operated vehicle (ROV) is a tethered underwater robot. They are common in 

deepwater industries such as offshore hydrocarbon extraction. An ROV may sometimes 

be called a remotely operated underwater vehicle to distinguish it from remote control 

vehicles operating on land or in the air. ROVs are unoccupied, highly maneuverable and 

operated by a person aboard a vessel. They are linked to the ship by a tether (sometimes 

referred to as an umbilical cable), a group of cables that carry electrical power, video 

and data signals back and forth between the operator and the vehicle. High power 

applications will often use hydraulics in addition to electrical cabling. Most ROVs are 

equipped with at least a video camera and lights. Additional equipment is commonly 

added to expand the vehicle’s capabilities. These may include sonar, magnetometers, a 

still camera, a manipulator or cutting arm, water samplers, and instruments that measure 

water clarity, light penetration and temperature. (Wikipedia, Remotely operated 

underwater vehicle, 2009) 
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Figure 17 - ROV Hercules 

2.4.2. REMOTE CONTROL VEHICLE 

A remote control vehicle (RCV) is defined as any mobile device that is controlled by a 

means that does not restrict its motion with an origin external to the device. This is often 

a radio control device, cable between control and vehicle, or an infrared controller. A 

remote control vehicle or RCV differs from a robot in that the RCV is always controlled 

by a human and takes no positive action autonomously. (Wikipedia, Remote control 

vehicle, 2009) 

 

Figure 18 - Explosieven Opruimingsdienst 
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In this chapter we discussed the various mobile inverted pendulums; we found that we 

can use several types of sensors from light sensor to accelerometer combined with 

gyroscope, each one with its own advantage and disadvantage, the light condition 

influence the light sensor, and the accelerometers and gyroscope are affected by noise. 

We also review a few example of robot operated by human at a distance, i.e. 

teleoperation. We discover that a telemanipulator is a device that is controlled remotely 

by a human operator.  
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CHAPTER 3 - ROBOT MODELING 

The first important step in the construction of the robot is modeling the system. This 

means deducing the mathematical equations that concern to the movement of the 

system, the set of forces that act in the main body and in every single wheel. 

3.1. NOMENCLATURE 

 

Symbol Parameter Value[unit] 

xr Straight line position [m] 

θp Pitch angle [rad] 

δp Yaw angle [rad] 

JRL, JRR Moment of inertia of the rotating masses with respect to z axis [kgm2] 

Mr Mass of rotating masses connected to the left and rigth wheel. 

MRL = MRR = Mr 

0.4[kg] 

Jp Moment of inertia of of the chassis with respect to z axis [kgm2] 

Jδ Moment of inertia of of the chassis with respect to y axis  [kgm2] 

Mp Mass of body 2.1[kg] 

R Radius of wheel 0.05[m] 

L Distance between the z axis and the center of gravity of the 

vehicle 

0.3[m] 

D Lateral distance between the contact patches of the wheel [m] 

yr Shift position of the wheel with respect to the y axis [m] 

xp Shift position of the chassis with respect to the x axis [m] 

g Garvity constant 9.8[ms-2] 

CL,CR Input torque for right and left wheels accordingly 0.147[Nm] 

 

3.2. FORCE ANALISYS AND SYSTEM EQUATIONS 

To develop an efficient control system for the vehicle, its dynamics have to be described 

by a mathematical model. 

The free body diagram of the robot is described in Fig.19 that can be found at  (Grasser, 

D'Arrigo, Colombi, & Rufer, February 2002). 
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Figure 19 – Free body diagram of the robot 

The following equations can be derivated from the model and can be found at  (Grasser, 

D'Arrigo, Colombi, & Rufer, February 2002).  

For left hand wheel (analog for right hand wheel). 

ẍோܯ = ்ܪ ܪ− + ( ௗ݂ோ + ௗ݂ோோ)      (1) 

ӱோܯ = ்ܸ  − ܸ  ݃       (2)ܯ−

ோܬோߠ̈ = ܥ −  ܴ        (3)்ܪ

 

ẋோ =  ோ          (4)ߠܴ̇

ẏ = ܮߠ̇− sin          (5)ߠ̇

ẋ = ܮߠ̇ cos          (6)ߠ̇

ߜ̇ = ẋೃಽିẋೃೃ
ଶ

         (7) 

For the chassis: 

ẍܯ = ோܪ) + (ܪ + ௗ݂        (8) 
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ӱܯ = ோܸ + ܸ ݃ܯ− +  ఏ      (9)ܨ

ܬߠ̈ = ൫ ோܸ + ܸ)ܮ sin ߠ − ൫ܪோ + ܮ(ܪ cosߠ − ܥ) +  ோ)  (10)ܥ

ఋܬߜ̈ = ܪ) − (ோܪ 
ଶ
        (11) 

where HL, HR, HTL, VL, VR, VTL, and VTR represent reaction forces between the 

different free bodies.  

Equations (1)-(11) can be represented in the state-space form as: 

ẋ(ݐ) = (ݔ)݂ +  (12)        ݑ(ݔ)݃

where x ϵ IRn, u ϵ IRm are respectively the state and the control. f(x) is nonlinear 

dynamic function matrix and g(x) is nonlinear input function matrix. The state, x of the 

system is defined as: 

ݔ = ݔൣ , ẋ ,ߠ, ,ߠ̇ ,ߜ  ൧′       (13)ߜ̇

Modifyng the equations above and then linearizing the result around the operating point 

(θp=0, xr=0, δ=0) and de-coupling, the system’s state space equations can be written in 

matrix form.  

The state-space equations for the robot can be written as two different systems: 1) a 

system “pendulum” describing the rotation about the z axis and 2) a system “rotation” 

modeling the rotation about the y axis. 

For the “pendulum” we have, 

⎣
⎢
⎢
⎢
⎡
ẋ
ẍ
Ɵ̇

Ӫ⎦
⎥
⎥
⎥
⎤

= ൦

0 1 0 0
0 0 ଶଷܣ 0
0 0 0 1
0 0 ସଷܣ 0

൪

⎣
⎢
⎢
⎡
ݔ
ẋ
Ɵ

Ɵ̇⎦
⎥
⎥
⎤

+  ൦

0
ଶܤ
0
ସܤ

൪ ܥ]  ோ]    (14)ܥ

and for the “rotation”, 

̇ߜ
ߜ̈
൨ = ቂ0 1

0 0ቃ ቂ
ߜ
ߜ̇
ቃ +  0

ܤ
൨ ܥ] −  ோ]      (15)ܥ

where,  

ଶଷܣ = ݃(1 −
4
3 ܮ

ܯ

ܺ ൰ , ସଷܣ      =
ܯ݃

ܺ  
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ଶܤ = ቆ
ܻܮ4
3ܺ −

1
ܮܯ

ቇ , ସܤ      = −
ܻ
ܺ ܤ       , =

6
൫9ܯ + ܦ൯ܴܯ

 

and, 

ܺ =
1
3
ܯ൫ܯ + ܮ(ܯ6

ܯ + 3
ܯ2

,          ܻ =
ܯ

ቀܯ + 3
ܴ(ܯ2

+
1
 ܮ

The details for equations (14) and (15) are not shown here and can be found elsewhere 

(Nawawi, Ahmad, & Osman, Dec 2007). 

We are now able to design an independent controller for each of these subsystems with 

the possibility of assigning different dynamics to each of them. 

3.3. MATLAB ANALYSIS 

In this section we will use the state-space equations, for the “pendulum” system, in the 

Matlab to run some simulations and see the response of the system to a determinate 

impulse.  

We use the tutorial present at (CJC, 1997). 

3.3.1. LINEAR QUADRATIC REGULATOR 

The Linear Quadratic Regulator (LQR) is a well know method to determine a practical 

feedback gains of a system.  

The main advantage of this method is that the optimal input signal u(t) is obtained from 

full state feedback; i.e. u = Kx for some K matrix. The 

feedback matrix K in question is obtained by solving the Ricatti equation associated 

with the particular LQR problem we have at hand.  

One of the disadvantages of the LQR controller is that obtaining an analytical solution 

to the Ricatti equation is quite difficult in all but the simplest cases. 

3.3.1.1. STATE-SPACE MODELS 
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The state space model represents a physical system as n first order coupled differential 

equations.  This type of representation helps doing computer simulations and allows 

observe the behavior of the system to a set of inputs instead of a single input. 

The general vector-matrix form of the state space model is: 

(ݐ)ݔ̇ = (ݐ)ݔ(ݐ)ܣ +  (࢚)࢛(ݐ)ܤ 

(ݐ)ݕ = (ݐ)ݔ(ݐ)ܥ +  (࢚)࢛(ݐ)ܦ 

where y is the output equation, and x is the state vector. 

The state-space equations for this problem are: 

⎣
⎢
⎢
⎢
⎡
ẋ
ẍ
ߠ̇
⎦ߠ̈
⎥
⎥
⎥
⎤

= ൦

0 1 0 0
0 0 ଶଷܣ 0
0 0 0 1
0 0 ସଷܣ 0

൪

⎣
⎢
⎢
⎡
ݔ
ẋ
ߠ
⎦ߠ̇
⎥
⎥
⎤

+ ൦

0
ଶܤ
0
ସܤ

൪ ܥ]  ݑ[ோܥ

ݕ =  ቂ1 0 0 0
0 0 1 0ቃ 

ݔ
ẋ
Ф
Ф̇

 + ቂ00ቃ  ݑ

where, 

ଶଷܣ = ݃(1 −
4
3 ܮ

ܯ

ܺ ൰ , ସଷܣ      =
ܯ݃

ܺ  

ଶܤ = ቆ
ܻܮ4
3ܺ −

1
ܮܯ

ቇ , ସܤ      = −
ܻ
ܺ 

and 

ܺ =
1
3
ܯ൫ܯ + ܮ(ܯ6

ܯ + 3
ܯ2

,          ܻ =
ܯ

ቀܯ + 3
ܴ(ܯ2

+
1
 ܮ

This problem can be solved using full state feedback. The schematic for this type of 

control system is shown below: 
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Figure 20 - Scheme for control system problems (CJC, 1997) 

In this problem R represents the input that needs to be given to the wheels, i.e., the 

velocity of the wheels; the four states represent the position and velocity of the wheels 

and the angle and angular velocity of the pendulum. The output y contains the position 

of the wheels and the angular velocity of the pendulum.  

We use it to design a controller that when an input is given to the system the pendulum 

should return to is balanced position and the wheel should move according. 

3.3.1.2. OPEN-LOOP POLES 

The first step to solve the problem is to determinate the open-loop poles of the system. 

For that we use the Maltab file (m-file) present in Appendix A according to the tutorial 

fount at (CJC, 1997). 

The Matlab command window should output the following text as a result: 

 

One of the poles is in the right-half plane, which means that the system is unstable in 
open-loop. 

3.3.1.3. LINEAR QUADRATIC REGULATOR METHOD 

First we need to assume that we have full-state feedback so that we can find the vector 

K which determines the feedback control law. 
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 For that we enter the code from the m-file of Appendix B according to the tutorial fount 

at (CJC, 1997). 

You should get the next value for K and a response plot: 

 

 

Figure 21 - Step response with LQR control 

The curve in green represents the pendulum's angle, in radians and the curve in blue 

represents the wheel’s position in meters. As you can see the wheels are not in the 

desire position but in the other direction.  

3.3.1.4. REFERENCE INPUT 

Now we want to get rid of the steady-state error. We need to compute what the steady-

state value of the states should be, multiply that by the chosen gain K, and use a new 

value as our reference for computing the input. This can be done by adding a constant 

gain Nbar after the reference. The schematic below shows this relationship: 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

-3

 

 
Wheels
Pendulum



32 
 

 

Figure 22 - Reference Input schematic (CJC, 1997) 

After adding the m-file of Appendix C according to the tutorial fount at (CJC, 1997) to 

your Matlab simulations you should see the following response: 

 

 

Figure 23 - Step response with LQR and Nbar control 

Now, the steady-state error is within our limits, the rise and settling times are met and 

the pendulum's overshoot is within range of the design criteria. 

3.3.1.5. OBSERVER DESIGN 
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This response is good, but was found assuming full-state feedback, which most likely 

will not be a valid assumption. To compensate for this, we will next design a full-order 

estimator to estimate those states that are not measured. A schematic of this kind of 

system is shown below, without Nbar: 

 

Figure 24 - Full-order estimator schematic (CJC, 1997) 

After running the m-file of Appendix D according to the tutorial fount at (CJC, 1997), 

you should see the following step response simulation plot: 
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Figure 25 - Step response with estimator 

This response is about the same as before. All of the design requirements have been met 

with the minimum amount of control effort, so no more iteration is needed.  

With this simulation we can observe that our inverted pendulum can reach an 

equilibrium position. It helped us understand and realize the variables involved in the 

process and which we need to consider, in this case are the angle of the pendulum and 

the position of the wheels to reach that position at that time the wheels must move at a 

certain speed, that speed is one of the inputs of our final system.  

3.4. MATLAB SIMULATION 

In this section we present a few simulations that were done in Matlab so that we can 

understand better the behaviour of the mobile inverted pendulum robot. 

3.4.1. WEIGHT   

First we start by adding some extra weight to the body of the robot so that we can 

analyse its behaviour.  
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Figure 26 - Final Matlab simulation 

 

 

 

This figure represents the 

final simulation of the LQR 

method applied to our 

mobile inverted pendulum 

robot.  

 
Figure 27 - Matlab simulation body mass +100g 

 

 

 

In this simulation we add 

more 100g to the body. As 

we can see there is no big 

difference in pendulum rise 

time or in the wheel’s 

position. They are both 

around 1.26 seconds. 
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Figure 28 - Matlab simulation body mass +500g 

 

 

 

In this simulation we add 

more 500g to the body. 

As we can see it took more 

time to settle the pendulum 

with the increase of weight. 

If compared with the initial 

graphic the difference is 

significative. 

 
Figure 29 - Matlab simulation body mass +1000g 

 

 

In this simulation we add 

more 1000g to the body. 

As we were excpecting it 

took more time to settle the 

pendulum. 

  

In conclusion we can observe that a heavy robot will take more time to settle.  By taking 

more time to settle the robot it means that the robot will tilt more making it more 

unstable. If it takes more time it will be necessary more acceleration to reach the 

equilibrium state.  

Therefore when choosing materials for the pendulum we have to choose strong, 

lightweight materials. 

4.3.2. CENTER OF GRAVITY 
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In this simulation we changed the center of gravity of the robot. By changing the robot 

center of gravity we are changing robot’s mass distribution. With this we can see how 

the mass of the robot must be distributed along its body. 

 

Figure 30 - 10cm lower Center of Gravity 

 

Figure 31 - 10cm upper Center of Gravity 
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As we can see in the figures if we lower the center of gravity of the robot we will 

decrease the setling time from 1.39s to 0.9s to settle the pendulum and when we 

increase the center of gravity the time to setle will be bigger and by the graphic we can 

also see that the pendulum doesn’t settle by complete.  

Therefore, and by analising both tests, to build a mobile inverted pendulum robot we 

need to choose material not to heavy and resistant so that it doesn’t crack on impact. 

Also we need to optimze the tall of the robot with is center of mass. A taller robot is 

easier to balance but we need to place its center of gravity so that it doesn´t stay at the 

top of the robot, when balancing and so the robot can remain in a balanced position the 

wheels must be driven to stay under its center of gravity.  
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CHAPTER 4 - ROBOT CONSTRUCTION 

In this chapter we discuss the physical construction of the robot as well as the 

components used in construction. 

First we will discuss the components and their characteristics. And then we will talk 

about the real construction of the robot. 

4.1. SENSORS 

The sensors are responsable for given feedback to the system so that the robot can move 

according. Thre are two types os sensor in this projects gyroscope and accelerometer. 

4.1.1. ADXL203 ACCELEROMETER 

Accelerometers are used for measure the acceleration that a body suffers relatively to 

free fall on a determinate axis. In our case we will need an accelerometer capable of 

given that acceleration on two axes so that we can calculate the angle. 

The ADXL103/ADXL203 are high precision, low power, complete single- and dual-

axis accelerometers with signal conditioned voltage outputs, all on a single, monolithic 

IC. The ADXL103/ADXL203 measure acceleration with a full-scale range of ±1.7 g. 

The ADXL103/ADXL203 can measure both dynamic acceleration (for example, 

vibration) and static acceleration (for example, gravity). (Analog Devices, 2006) 

 

Figure 32 - Accelerometer 

 

4.1.2. ADXRS610 - 300 DEGREE/SEC GYROSCOPE 
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The ADXRS610 is a complete angular rate sensor (gyroscope) that uses the Analog 

Devices, Inc. surface-micromachining process to create a functionally complete and low 

cost angular rate sensor integrated with all required electronics on one chip. 

(Electronics) 

This gyro is meant to be use with the accelerometer. As the gyroscope is capable of 

measuring the rate of a single direction it’s used to correct the angle given by the 

accelerometer.   

 

Figure 33 - Gyroscope 

4.2. HARDWARE 

4.2.1. ARDUINO NANO 

Arduino Nano is a surface mount breadboard embedded version of the Arduino with 

integrated USB. It is small, complete, and breadboard friendly. The Nano was designed 

and is being produced by Gravitech. (A. Mellis, Arduino - ArduinoBoardNano, 2006)  

Arduino is an open-source physical computing platform based on a simple 

microcontroller board and it has a specific development environment for writing 

software for the board, the “Arduino IDE”.  

Arduino can be used to develop interactive objects, taking inputs and controlling 

physical outputs. It can be connected via serial port to software on the computer or it 

can be stand-alone.  
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Figure 34 - Arduino Nano 

4.2.2. ARDUINO BT 

The Arduino BT is an Arduino board with built-in bluetooth module, allowing for 

wireless communication.  (A. Mellis, Arduino - ArduinoBoardBluetooth, 2007) 

 
Figure 35 - Arduino BT-V06 

4.2.3. DEVANTECH RD01 DRIVE SYSTEM 

The Devantech RD01 Drive system is a complete Robot Drive system, ready to 

integrate into your robot, comprised of an MD23 motor drive module, two EMG30 gear 

motors with encoders, two mounting brackets and two 100mm wheels with hubs already 

fitted. Screws to fit the motors to the brackets and a hex key for the hub screw are 

included.  (Robots Ltd., Active Robots - RD01 Robot Drive System - UK) 
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Figure 36 - Devantech RD01 Drive System set 

 

4.2.4. BASES AND STRUCTURE 

For the bases of the robot we used Perspex, this material was chosen because it’s light 

and robust, precisely, five Perspex sheets of 15*20cm with 5mm thickness. For the 

main structure we used four metal rods of 50cm long and 6mm thickness. 

 

Figure 37 - Perspex and metal rods 

4.2.5. BATTERY 

To power the wheels and the Arduino we used a 12V battery pack. 
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4.3. ROBOT’S CONSTRUCTION 

From theory we know that a taller robot will be easier to balance, because it will fall 

slowly. However a taller robot will be more massive and there for it will need more 

acceleration to balance.  

Therefore we build a 0.56m tall (including wheels) robot that weight 2.1kg. 

 

Figure 38 - Robot structure 

Before the “real” construction of the robot begins, we drilled holes to hook up the metal 

rods in all the Perspex sheets before proceed further. We drilled 2cm away of each 

corner, with 6mm holes. Was also drilled a hole in the middle of the Perspex sheets for 

wiring. 

Next we hook up the EMG30 Mounting Brackets to one of the Perspex sheets (some 

drilling will be necessary for the screws). This will be the base, were the motors and 

wheels will be hooked.   
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Figure 39 – Bracket montage 

Then we hooked up the motors and respective wheels. 

 

Figure 40 – Motors 



45 
 

 

Figure 41 – Motors and wheels 

After both motors and wheels are hooked up its time to build the main structure which 

will support the MD23 for the motors, the accelerometer, gyroscope and all the 

necessary battery and wires. 

For that it will be necessary one bolt spanner and some nuts. Nuts of 6mm and bolt 

spanner of 10mm. 

 

Figure 42 – Bolt spanner and nuts 

We start by hooking up the metal rods to the “base”, and then we repeat the same 

process for the others sheets of Perspex. 
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Figure 43 – First sheet of Perspex with metal rods. 

After all four metal rods are attached to the main base it should be similar to the 

following image. We must ensure that all nuts used in the process are well tight to avoid 

that the robot wobbling while balancing. 

 

Figure 44 – Base and metal rods 

The process is the same for the next four sheets. In the end the structure should be 

similar to the following. This will be our “body” were we will place the battery and the 

circuit (Arduino + accelerometer + gyroscope).  
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Figure 45 - Robot structure 

4.4. ASSEMBLED CIRCUIT 

The main circuit of the robot is composed by the sensors (accelerometer and 

gyroscope), the Arduino, the motors and battery.  

When we assemble this circuit we need to make sure that the all GND (ground) pins are 

connected. And that we supply power to both accelerometer and gyroscope, it can be 

made throw the Arduino +5V output. 

From the motors encoder we need to connect the SCL to pin 21, analog 5, of the 

Arduino and SDA is connected to two 1k8Ω parallel resistances and continues to pin 22, 

analog 4, of Arduino (the scheme is at figure 39). It’s important that this pin are 

respected, otherwise the MD23 will not communicate with Arduino. 

In the accelerometer we are interest in read the values of x and y and so we connect 

them to pins 23 and 24 respectively analog 3 and 2, from gyroscope we are only 

interested in the rate that we connected to pin 20, analog 6. They are connected to the 

analog pins of the Arduino because they are analog devices. 

We used the +5v output (at orange in figure 41) of MD23 to power the Arduino Nano 

and its connected to pin 27, +5v of Arduino. 

The following figure represents a schematic of the circuit. 
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Figure 46 - Assembled circuit 
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Figure 47 - Final Circuit 

 

Now that the main structure is done and we know how to assemble the circuit we place 

the components in their place.  

The sensors were placed at the top of the robot so that we can detect the angle the faster 

as possible.  

The MD23 is placed in the base to be connected with the motors.  

We have placed the 12v battery to power both motors and Arduino at the base just up 

the MD23. 

The following figure represents the final version of the robot with all components 

placed. 
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Figure 48 - Final robot front Figure 49 - Final robot side 

 

4.5. SOFTWARE IMPLEMENTATION 

Now that the circuit is assembled we need to know how to use sensor’s information. 

 

Figure 50 - Inverted Pendulum process 

The inverted pendulum is an unstable system it can only reach a balance position if all 

its components acts according an in order. To make sure that they act in order the time 
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scale must be precise for that we collect all the data and perform the kalman and pid 

calculation at 50Hz.  

In an unstable system we must have mechanism that can help us measure that 

instability; in this case we need a way to measure the pendulum’s tilt for that we used an 

accelerometer and a gyroscope. We used a two-axis accelerometer because we need to 

measure the acceleration that the pendulum experiences in those two axes. 

 

Figure 51 - Pendulum's Angle 

Only with those values and some trigonometry it’s possible to determine the 

pendulum’s angle. If we only have one axis, that would not be possible. 

After we have the angle (given by the accelerometer) and due to the fact that it is with 

noise we need to minimize that noise, this noise can be from a bad cable contact, bad 

readings from the pin. For estimate the real angle we need to use the accelerometer’s 

angle and gyroscope’s angular rate, which is noisy, and filter. We use a Kalman filter to 

achieve this. 

Kalman filter is an efficient recursive filter that can estimate the state of a system from 

noisy values. It’s a powerful filter because supports estimations of past, present and 

even future states.  
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Figure 52 - Kalman process 

After we get the final angle it’s time to work with it. As we said before to make the 

robot balancing is necessary that the wheels move according to the angle, for this and 

even though the simulation was done using the LQR method, we use the PID method to 

balance the robot. 

A PID controller attempts to correct the error between a measured process variable, 

which in our case is pendulum’s angle, and a desired setpoint, for us the setpoint is the 

equilibrium angle, i.e., the angle when the robot is at an equilibrium position, by 

calculating and then instigating a corrective action that can adjust the process 

accordingly and rapidly, to keep the error minimal, by corrective action we understand 

the wheel’s speed. We have tuned each of the PID values manually by trial and 

error.Then with PID’s corrective action we feed the motors and if everything works well 

it should balance. 

The next step is teleoperation. In this step we wanted to drive the robot with the help of 

a wiimote, for that we needed to receive the data of the wiimote to the Arduino, in this 

case we needed to use an Arduino BT.   
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CHAPTER 5 - ROBOT EVALUATION 

In this chapter we will discuss the result of the tests that were made to the mobile 

inverted pendulum robot. 

To test the dynamic of the mobile inverted pendulum we test its behavior when we 

change its unstable variable, i.e. when we changed the mass of the body. Due to the fact 

that we can’t remove mass to the body we have test it by adding different mass to the 

body. 

First we need to know the behavior of the pendulum as it is. More specifically, angle 

variation. For that we made the following graphic to illustrate it. It illustrates the angle 

variation in a 20 second time window. 

 

Graphic 1 - Robot's angle 

As we can see in the graphic the robot´s angle will tilt 1degree around the equilibrium 

angle, i.e. the angle when the robot is perfectly stable, in this case is 90degrees. 

In the following test we add some mass to robot’s chassis in different position and then 

we noticed the change in the angle. 

The extra weights (20g, 100g and 400g) were added at the top and middle of the robot, 

in the center (black rectangle), positive (red rectangle) and negative (green rectangle), as 
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showed in the figure 53, this has allowed us to notice the behavior of the pendulum to 

different variations of the weight in different parts of its body.  

 

Figure 53 - Test structure 

 

5.1. TEST WITH +20G OF EXTRA WEIGHT 

In this test we add 20g of extra weight to the robot; it was made to observe the behavior 

of the robot to a slight increase in its mass. 
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Graphic 2 - Extra 20g at top center 

 
Graphic 3 - Parallel between Normal and Extra 20g at top center 

As we can observe in the figure the robot’s behavior was the same as before, the tilt of 

the robot was around 1 degree in relation to its setpoint. Therefore it’s possible to add a 

little mass to the robot that it should continue balancing. 
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Graphic 4 - Extra 20g top negative 

 
Graphic 5  -  Extra 20g top positive 

These two graphic represent the tilt of the angle when adding the extra weight in the 

negative or positive side of the robot. As we can see and for this mass there is no 

difference between them and between the original plot. 

The next graphic represent adding the same extra weight but now in the middle of the 

body. 

 

Graphic 6 - Extra 20g middle center 
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Graphic 7 - Parallel between normal and extra 20g middle center 

As we can see the effects of that extra weight is practically none in the balancing of the 

robot even if that weight is added to the middle of the robot. 

 
Graphic 8 - Extra 20g middle positive 

 
Graphic 9 - Extra 20g middle negative 

These two graphic represent the tilt of the angle when adding the extra weight in the 

negative or positive side of the robot. As we can see and for this mass there is no 

difference between them and between the original plot. 

In conclusion we can observe that adding a small weight to the top or middle the robot 

will not influence the behavior of the robot. Regardless if that mass is added at the 

center, right or left. The robot should be able to balance. 
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5.2. TEST WITH +100G OF EXTRA WEIGHT 

In this test we add 100g of extra weight to the robot; it was made to observe the 

behavior of the robot to a slight increase in its mass. 

 
Graphic 10 - Extra 100g top center 

 

 

Graphic 11 - Parallel between normal and extra 100g top center 

Even with 100g of extra weight the robot still can balance and the variation of the angle 

is the same, 1 degree around the setpoint, however the robot tilt more (frequency in the 

graphic). 

The problem came when we add that extra weight to the left or right side of the robot, 

the robot can respond to that extra weight and it will fall. Both following test only have 

the duration of 10s, and as we can see the balance was not regular, it tilted a lot. 
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Graphic 12 - Extra 100g top negative 

 
Graphic 13 - Extra 100g top negative 

Now if we add the extra weight to the middle of the robot, the robot can balance as we 

can see in the following figures. 

 

Graphic 14 - Extra 100g middle center 
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Graphic 15 - Parallel between normal and extra 100g middle center 

However the robot can respond if we add that extra weight in the middle but in the left 

or in the right side. It falls about 10 seconds before the start.  

Graphic 16 - Extra 100g middle positive Graphic 17 - Extra 100g middle negative 

 

5.3. TEST WITH +400G OF EXTRA WEIGHT 

In this test we add 400g of extra weight to the robot; it was made to observe the 

behavior of the robot to a slight increase in its mass. 

The robot still can perform a shy balance, but cannot maintain balance for a big period 

of time, it eventually will fall faster that for the others extra weight.  
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Graphic 18 - Extra 400g top center 

 

Graphic 19 - Parallel between normal and extra 400g top center 

If we add that weight to the negative or positive side of the robot it will be chaotic. The 

robot can perform any kind of balance. It falls about 4second before it begins. 
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Graphic 20 - Extra 400g top negative 

 
Graphic 21 - Extra 400g top positive 

 

When adding the extra weight of 400g to the middle of the robot it behaves more 

erratically. It as a bigger tilts that in the normal case. If that weight is added to the 

positive or negative side of the robot, it has the same irregular behavior and falls. 

 

Graphic 22 - Extra 400g middle center 
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Graphic 23 - Parallel between normal and extra 400g middle center 

 
Graphic 24 - Extra 400g middle negative 

 
Graphic 25 - Extra 400g middle positive 

 

In general if we add weight to the center of the robot it can still balance regardless if it 

is in the top or middle of the robot. The major difference in them is, if the weight is 

added to the top we are moving the center of gravity up and therefore it will take more 

time to settle the robot and will be necessary more acceleration for it. 

When we added a heavy extra weight to the positive or negative side of the robot we 

observe an erratic behavior, this is due to the fact that the robot’s center of gravity is 

shifted of the axis. 
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CHAPTER 6 – CONCLUSION 

In control engineering we deal with dynamic systems, an example of one of those 

systems is the inverted pendulum system, in this thesis we have model and build a 

mobile inverted pendulum robot. 

The inverted pendulum represents a fine example of an unstable system; it’s widely 

used in research labs to demonstrate the capacities of feedback systems due to its 

unstable nature. It’s considered a simplified representation of a rocket flying into space.  

We have simulated the pendulum behavior in Matalb in which we could observe the 

behavior of our mobile inverted pendulum. In the simulations we used the Linear 

Quadratic Regulator method because it can provide us a rapid way to simulate an 

unstable system. This was a difficult part of the thesis because we didn’t have any 

experience with Matlab and with simulations of this type. 

In the simulation we assume that we have predefined a mass, maintaining all other 

variables, and then we add some extra weight to observe the settling time. From this we 

could see that a massive robot will take more time to settle in comparison with a lighter 

robot and therefore will origin a more unstable system. With this we can conclude that 

our robot will need to be as light as possible.  

That’s why we used Perspex and metal rods for the structure, they are both strong, to 

avoid that the robot break during the test and case it falls, and these components are not 

heavy. 

In others simulations we changed the place of system center of gravity. This allowed us 

to see how the weight should be distributed in the robot and we have concluded that the 

center of gravity of the robot should be as low as possible. 

We build a mobile inverted pendulum of 56cm tall because a taller robot is more easily 

balanced, we can observe that by balancing a broom for example, a taller broom is 

easily balanced than a shorter. 

We initially start by using an IMU Combo board that included an accelerometer and a 

gyroscope but because of problems with that board we switched to a two-axis 

accelerometer breakout board and a gyroscope breakout board. 
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We choose the ADXL203 accelerometer because it’s a two-axis accelerometer with 

high precision and low cost. We needed for a two-axis accelerometer because we were 

interested in measuring the acceleration that the pendulum suffers in two axes so that we 

can determinate the angle. 

We used a single axis gyroscope to correct the angle given by the accelerometer, it was 

only necessary a single axis gyroscope because we were interested in measuring the 

angular rate in the vertical direction, that is the direction were the pendulum balance. 

The Arduino board used in this prototype has provided us a way to read the analog 

values from the accelerometer and gyroscope, and to communicate with the computer. It 

is the “brain” of our robot. 

The developed prototype can balance using the implemented PID (proportional-integral-

derivate) controller; we implemented a PID controller instead of the LQR (Linear 

Quadratic Regulator) controller used in the Matlab simulation because the PID 

controller is easier to implement. The values founded for the terms of the PID method 

were found by trial and error and that as caused that they may not be the more accurate 

as possible, also the process of trial and error isn’t the most academic process to find 

those values. 

Due to the fact that the motors don’t have an integrated PID and because we didn’t have 

the opportunity to implement a PID in the motors the robot can only balance in a 

particular surface. The robot was developed and tested in that surface. Although we 

think that the major problem is in the wheels. 

In the test that we made we can conclude that a small increase in the mass of the robot 

don’t influence robot’s behavior when they were placed in center to robot’s vertical 

axis. However we notice that when we add a heavy mass the robot tilted more and 

behave more erratically. Although we could observe a big change in the behavior of our 

prototype when we added the mass in the center, the same didn’t append when we 

added the mass on the sides of the robot. In those cases the robot can maintain the 

balance process and falls, it occurred faster when the weight was added to the top of the 

robot instead of in the middle, this is due to the fact that the center of gravity of the 

robot is shifted away of the vertical axis. 
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Therefore, future work for this thesis should involve improving the balance process of 

the robot so that it can be more stable, this could be by implementing a PID algorithm 

for the motors or by eventually changing the wheels or the motors.  

It also should be considered for future work associating this robot with a wiimote to 

work on the teleoperation. The balancing implementation should be similar, there is 

only necessary to change the Arduino to a Bluetooth microcontroller and we can for 

example use the Arduino BT and work in the communication between both equipments. 

The idea to make the robot walk is changing the setpoint according to the desire 

direction. Teleoperation of system that exhibit fast dynamic behavior is a challenging 

application.  
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APPENDIX 

APPENDIX A – OPEN-LOOP POLES M-FILE 

%data 
M = 2.1; 
m = 0.4; 
%Hr = 0.25; 
%Hfr = 0.6;  
C = 1.5*0.0980;  
%i = 0.006; 
g = 9.8; 
l = 0.3; 
r = 0.05; 
 
%variables 
X=(1/3)*((M*(M+6*m)*l)/(M+(3/2)*m)); 
Y=(M/((M+(3/2)*m)*r))+1/l; 
A23=g*(1-(4/3)*l*(M/l)); 
A43=g*M/l; 
B2=((4*l*Y/3*X)-(1/M*l)); 
B4=-(Y/X); 
 
%A, B, C and D matrices 
A=[0 1 0 0; 
0 0 A23 0; 
0 0 0 1; 
0 0 A43 0]; 
B_1=[0; 
B2; 
0; 
B4]; 
B_2=[C+C]; 
B=B_1*B_2; 
C=[1 0 0 0; 
0 0 1 0]; 
D=[0; 
0]; 
 
%open-loop poles 
p=eig(A) 
 

APPENDIX B - LQR DESIGN 

C'*C 
 
x=100000; 
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y=500; 
Q=[x 0 0 0; 
   0 0 0 0; 
   0 0 y 0; 
   0 0 0 0]; 
R = 1; 
K = lqr(A,B,Q,R) 
Ac = [(A-B*K)]; 
Bc = [B]; 
Cc = [C]; 
Dc = [D]; 
 
T=0:0.01:5; 
U=0.2*ones(size(T)); 
[Y,X]=lsim(Ac,Bc,Cc,Dc,U,T); 
plot(T,Y) 
legend('Wheels','Pendulum') 
 

APPENDIX C – NBAR CONTROL 

Cn=[1 0 0 0];  
Nbar=rscale(A,B,Cn,0,K) 
Bcn=[Nbar*B]; 
[Y,X]=lsim(Ac,Bcn,Cc,Dc,U,T); 
plot(T,Y) 
legend('Cart','Pendulum') 
 

APPENDIX D – ESTIMATOR 

p = eig(Ac) 
 
P = [-40 -41 -42 -43]; 
L = place(A',C',P)' 
 
Ace = [A-B*K             B*K; 
        zeros(size(A)) (A-L*C)]; 
Bce = [       B*Nbar; 
      zeros(size(B))]; 
Cce = [Cc zeros(size(Cc))]; 
Dce = [0;0]; 
T = 0:0.01:5; 
U = 0.2*ones(size(T)); 
[Y,X] = lsim(Ace,Bce,Cce,Dce,U,T); 
plot(T,Y) 
legend('Wheel','Pendulum') 
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APPENDIX E – KALMAN CODE 

#include "math.h" 
 
/*  
 *  
 * (c) 2003 Trammell Hudson <hudson@rotomotion.com> 
 *  
 * Converted to Java (c) 2008 Andy Shaw 
 * 
 *  This file is part of the autopilot onboard code package. 
 *   
 *  Autopilot is free software; you can redistribute it and/or modify 
 *  it under the terms of the GNU General Public License as published by 
 *  the Free Software Foundation; either version 2 of the License, or 
 *  (at your option) any later version. 
 *   
 *  Autopilot is distributed in the hope that it will be useful, 
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of 
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
 *  GNU General Public License for more details. 
 *   
 *  You should have received a copy of the GNU General Public License 
 *  along with Autopilot; if not, write to the Free Software 
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA 
 * 
 */ 
 
unsigned long nextKCompTime = 0; 
 
/* 
     * Our update rate.  This is how often our state is updated with 
 * gyro rate measurements.  For now, we do it every time an 
 * 8 bit counter running at CLK/1024 expires.  You will have to 
 * change this value if you update at a different rate. 
 */ 
int        dtMS = 20; // 50 hz   
float      dt = ((float)dtMS/1000.0); // 50 hz   
 
 
/* 
     * Our covariance matrix.  This is updated at every time step to 
 * determine how well the sensors are tracking the actual state. 
 */ 
float P[2][2] = { 
  { 
    1, 0  } 
  , 
  { 
    0, 1  } 
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  ,}; 
 
/* 
     * Our two states, the angle and the gyro bias.  As a byproduct of computing 
 * the angle, we also have an unbiased angular rate available.   These are 
 * read-only to the user of the module. 
 */ 
float angle = 0.0f; 
float q_bias = 0.0f; 
float rate = 0.0f; 
/* 
     * R represents the measurement covariance noise.  In this case, 
 * it is a 1x1 matrix that says that we expect 0.3 rad jitter 
 * from the accelerometer. 
 */ 
static float R_angle = 0.3f; 
/* 
     * Q is a 2x2 matrix that represents the process covariance noise. 
 * In this case, it indicates how much we trust the acceleromter 
 * relative to the gyros. 
 */ 
static float Q_angle = 0.001f; 
static float Q_gyro = 0.003f; 
 
 
/* 
 * state_update is called every dt with a biased gyro measurement 
 * by the user of the module.  It updates the current angle and 
 * rate estimate. 
 * 
 * The pitch gyro measurement should be scaled into real units, but 
 * does not need any bias removal.  The filter will track the bias. 
 * 
 */ 
boolean state_update( 
float q_m, /* Pitch gyro measurement */ 
float dt) 
{ 
  /* Unbias our gyro */ 
  float q = q_m - q_bias; 
 
  /* 
   * Compute the derivative of the covariance matrix 
   * 
   * Pdot = A*P + P*A' + Q 
   * 
   * We've hand computed the expansion of A = [ 0 -1, 0 0 ] multiplied 
   * by P and P multiplied by A' = [ 0 0, -1, 0 ].  This is then added 
   * to the diagonal elements of Q, which are Q_angle and Q_gyro. 
   */ 
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  float Pdot[] = { 
    Q_angle - P[0][1] - P[1][0], /* 0,0 */ 
    -P[1][1], /* 0,1 */ 
    -P[1][1], /* 1,0 */ 
    Q_gyro    /* 1,1 */ 
 
  }; 
 
  /* Store our unbias gyro estimate */ 
  rate = q; 
 
  /* 
         * Update our angle estimate 
   * angle += angle_dot * dt 
   *       += (gyro - gyro_bias) * dt 
   *       += q * dt 
   */ 
  angle += q * dt; 
 
  /* Update the covariance matrix */ 
  P[0][0] += Pdot[0] * dt; 
  P[0][1] += Pdot[1] * dt; 
  P[1][0] += Pdot[2] * dt; 
  P[1][1] += Pdot[3] * dt; 
 
  return true; 
} 
 
 
/* 
 * kalman_update is called by a user of the module when a new 
 * accelerometer measurement is available.  ax_m and az_m do not 
 * need to be scaled into actual units, but must be zeroed and have 
 * the same scale. 
 * 
 * This does not need to be called every time step, but can be if 
 * the accelerometer data are available at the same rate as the 
 * rate gyro measurement. 
 * 
 */ 
boolean kalman_update( 
//const float  ax_m, /* X acceleration */ 
//const float  az_m /* Z acceleration */ 
float angle_m /* angle in rad, determined from accel */) 
{ 
  /* Compute our measured angle and the error in our estimate */ 
  //const float  angle_m = atan2( -az_m, ax_m ); 
  //const float  angle_m = atan2( ax_m, az_m );  //bk 
  float angle_err = angle_m - angle; 
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  /* 
         * C_0 shows how the state measurement directly relates to 
   * the state estimate. 
   * 
   * The C_1 shows that the state measurement does not relate 
   * to the gyro bias estimate.  We don't actually use this, so 
   * we comment it out. 
   */ 
  float C_0 = 1; 
  /* const float  C_1 = 0; */ 
 
  /* 
         * PCt<2,1> = P<2,2> * C'<2,1>, which we use twice.  This makes 
   * it worthwhile to precompute and store the two values. 
   * Note that C[0,1] = C_1 is zero, so we do not compute that 
   * term. 
   */ 
  float PCt_0 = C_0 * P[0][0]; /* + C_1 * P[0][1] = 0 */ 
  float PCt_1 = C_0 * P[1][0]; /* + C_1 * P[1][1] = 0 */ 
 
  /* 
         * Compute the error estimate.  From the Kalman filter paper: 
   *  
   * E = C P C' + R 
   *  
   * Dimensionally, 
   * 
   * E<1,1> = C<1,2> P<2,2> C'<2,1> + R<1,1> 
   * 
   * Again, note that C_1 is zero, so we do not compute the term. 
   */ 
  float E = 
    R_angle + C_0 * PCt_0 /* + C_1 * PCt_1 = 0 */; 
 
  /* 
         * Compute the Kalman filter gains.  From the Kalman paper: 
   * 
   * K = P C' inv(E) 
   * 
   * Dimensionally: 
   * 
   * K<2,1> = P<2,2> C'<2,1> inv(E)<1,1> 
   * 
   * Luckilly, E is <1,1>, so the inverse of E is just 1/E. 
   */ 
  float K_0 = PCt_0 / E; 
  float K_1 = PCt_1 / E; 
 
  /* 
         * Update covariance matrix.  Again, from the Kalman filter paper: 
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   * 
   * P = P - K C P 
   * 
   * Dimensionally: 
   * 
   * P<2,2> -= K<2,1> C<1,2> P<2,2> 
   * 
   * We first compute t<1,2> = C P.  Note that: 
   * 
   * t[0,0] = C[0,0] * P[0,0] + C[0,1] * P[1,0] 
   * 
   * But, since C_1 is zero, we have: 
   * 
   * t[0,0] = C[0,0] * P[0,0] = PCt[0,0] 
   * 
   * This saves us a floating point multiply. 
   */ 
  float t_0 = PCt_0; /* C_0 * P[0][0] + C_1 * P[1][0] */ 
  float t_1 = C_0 * P[0][1]; /* + C_1 * P[1][1]  = 0 */ 
 
  P[0][0] -= K_0 * t_0; 
  P[0][1] -= K_0 * t_1; 
  P[1][0] -= K_1 * t_0; 
  P[1][1] -= K_1 * t_1; 
 
  /* 
         * Update our state estimate.  Again, from the Kalman paper: 
   * 
   * X += K * err 
   * 
   * And, dimensionally, 
   * 
   * X<2> = X<2> + K<2,1> * err<1,1> 
   * 
   * err is a measurement of the difference in the measured state 
   * and the estimate state.  In our case, it is just the difference 
   * between the two accelerometer measured angle and our estimated 
   * angle. 
   */ 
  angle += K_0 * angle_err; 
  q_bias += K_1 * angle_err; 
  return true; 
} 
 
float setDT(float newDT) //input in ms 
{ 
  dt = newDT/1000.0; 
  dtMS = newDT; 
} 
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float getKalmanAngle() 
{ 
  return angle; 
} 
 
boolean calculateKalman(float acc_angle_rads, float gyro_rads_sec) 
{    
  // do the timing   
  unsigned long now = millis(); 
  if (now<nextKCompTime) 
    return false; 
 
  state_update(gyro_rads_sec, dt); 
  kalman_update(acc_angle_rads); 
 
  nextKCompTime = now + dtMS;   
  return true; 
} 
 

APPENDIX F – MAIN CODE 

// the time to update most significant parts of the loop (Kalman, PID) 
int timeParam = 20; 
 
//////////////////////////////////////////////////////////////////////////////////////// 
// Sensor pins and variables 
//////////////////////////////////////////////////////////////////////////////////////// 
//define pins 
int xaxis = 3;                  // x-axis of the accelerometer 
int yaxis = 2;                  // y-axis 
int xrate = 6;                  // x-rate of gyro 
 
// define variables for the above 
float xAcc = 0; 
float yAcc = 0; 
float xGyro = 0; 
 
 
//////////////////////////////////////////////////////////////////////////////////////// 
// Kalman vars  
//////////////////////////////////////////////////////////////////////////////////////// 
float gyroMult=1.1; 
float acc_angle_rads=0; 
float gyro_rads_sec=0; 
float kalman_angle=0; 
 
// timing monitor, mainly for Kalman 
unsigned long t_start = 0; 
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//////////////////////////////////////////////////////////////////////////////////////// 
// MD23 and Motors stuff 
//////////////////////////////////////////////////////////////////////////////////////// 
#include <Wire.h> 
#include <MD23.h> 
 
 
MD23 md23; // create an MD23 object with default address 
 
 
//////////////////////////////////////////////////////////////////////////////////////// 
// PID Stuff 
//////////////////////////////////////////////////////////////////////////////////////// 
#include <PID_Beta6.h> 
 
double PID_setpoint=90;  
double PID_input=90;  
double PID_output=128;  
double inputRange = 7; 
 
///////////////////////////////////////////////////////////// 
// define tuning parameters 
 
 
// the strength of the response 
double PID_proportional=0.83;  
double PID_integral=0.40; 
double PID_derivative=0.48; 
 
///////////////////////////////////////////////////////////// 
 
//Specify the links and initial tuning parameters 
PID myPID(&PID_input, &PID_output, &PID_setpoint, PID_proportional, 
PID_integral, PID_derivative); 
 
//////////////////////////////////////////////////////////////////////////////////////// 
// Main program 
//////////////////////////////////////////////////////////////////////////////////////// 
void setup() 
{ 
  
  Serial.begin(9600); 
 
  setDT(timeParam); 
 
  Wire.begin() 
  md23.setMode(0);  
  md23.resetEncoders(); 
  md23.setAccelerationRate(0x10);  
  md23.disableSpeedRegulation();   
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  // Initialise the PID model 
  PID_input = 90; 
  PID_setpoint = 90;  
  myPID.SetInputLimits(PID_setpoint-inputRange, PID_setpoint+inputRange);       
myPID.SetOutputLimits(5, 250); 
  myPID.SetSampleTime(timeParam); 
  myPID.SetMode(AUTO); // the PID is active 
 
  t_start = millis(); 
 
} 
 
void enforceCycleTime(unsigned long cycleTime) 
{ 
  // aiming for cycleTime ms loop 
  unsigned long lastStart = t_start; 
  t_start = millis(); 
 
  unsigned long minDiff = cycleTime; 
  unsigned long diff = t_start - lastStart; 
  if (diff < minDiff) 
    delay (minDiff - diff - 1); 
  t_start = millis();   
} 
 
 
void loop() 
{ 
  // we may enforce the time to timeParam ms 
  enforceCycleTime(timeParam); 
 
  
  xAcc = (analogRead(xaxis)-506);  
  xAcc = xAcc *= 0.0048544;  
  yAcc = (analogRead(yaxis)-506);  
  yAcc = yAcc *= 0.0048544;   
  xGyro = (analogRead(xrate) - 508); 
 
  acc_angle_rads = atan2(yAcc, xAcc);        
  gyro_rads_sec = radians(xGyro*gyroMult);   
 
  if (calculateKalman(acc_angle_rads, gyro_rads_sec)) 
  { 
    kalman_angle = getKalmanAngle(); 
  } 
   
  PID_input = degrees(kalman_angle);  
  if (myPID.Compute()) 
  { 



80 
 

    int motors = ((int)PID_output); 
 
    if (motors<128 && motors>5) 
      motors = motors - 9; 
    else if (motors>128 && motors <250) 
      motors = motors + 9;     
 
    md23.setMotor1Speed(motors);   
    md23.setMotor2Speed(motors);  
  }  
 
  return; 
} 
 


